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EXACT SOLUTIONS OF THE LINEAR PROBLEM OF THE STEADY-STATE WAVES 
TREATED BY A DIPOLE IN A FLOW OF A STRATIFIED FLUID* 

V.F. SANNIKOV 

The problem of the steady-state waves which are formed when there is 
uniform flow of a non-viscous, incompressible, vertically stratified 
fluid round a dipole is considered in a linear formulation. Using the 
analytical properties of the solutions, two formulae are obtained for 
the vertical displacement field in the form of series of single 
integrals taken over the spectral curves. These formulae are simpler 
than those which have been previously proposed /l/ since the integrands 
do not contain special functions with logarithmic singularities and 
enable one to simplify the numerical analysis of the close domain of the 
wave field in which the asymptotic forms /2-41 are applicable 151. 

1. Let a uniform flow of a non-viscous incompressible fluid of finite depth h occur 
around a finite dipole which is oriented in an antiparallel direction to the current. The 
density of the unperturbed fluid (bO(z) depends on a single vertical coordinate s and does not 
decrease with depth. In the linear formulation, the field of the vertical displacements of 
the fluid particles <(.r. y, z). which is formed by the dipole, is described by an equation 
with the boundary conditions 

Here, 5 and y are the horizontal coordinates, the fluid flows with a velocity C in the 
positive direction of the horizontal r-axis, the dipole is located at a point with the - 
ordinates (O,O, so), M is the moment of the dipole, N (2) is the Vaisala-Brunt frequency, & 
is a delta function and g is the acceleration due to gravity. The radiation condition i.e. 
that the basic wave perturbations are formed lower down along the flow, has to be added to 
the boundary conditions (1.2). 

By using forward and inverse Fourier transformations with respect to the horizontal co- 
ordinates, the solution of problem (1.1) can be written in the form of a double integral 

112 

<(2, y, 2,) = itf~-*(2q-~ po(z,)Re 5 q_d8 (1.2) 
-;r/z 

e~=J_gXP[$lz~]5dp, t~=.rcos8+~sinO (IJ) 

!(z, z*; J,,b) = - +)(z.i~;ii. p), i. = (c cosB)-+ 

where & is Green's function for the problem 

1;(~)~-$ (pu 3) -+ &(l\;‘Lh -fi)n = 0 (1.4) 

2 --Ran = u (z =O). 11'0 (Z---_-h) 

The arithmetic branch of the root 8 is selected in (1.3) and the integration of o_ is 
carried out along the real axis from zero to infinity passing around the poles of x from 
below along small semicircles in the complex plane of the parameter 8 with a cut (-33,~]. 
This method of passing around the poles is a consequence of the radiation condition. 

It is known from the theory of linear differential operators /6/ that t is a meromorphic 
function of the parameters h and 8 which, for each real Ir. has a denumerable set, which is 
bounded from above, of just simple and real poles p = fi,, p,> &> . . . The properties of the 
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dispersion dependences 1;,,(k) have been described in /l, 4/. For each real .R, the function 
: has not more than a denumerable set, which is bounded from below, of simple and real poles 
with respect to i.. The singularities of _ are the eigenvalues of problem (1.4). Henceforth, 
we shall assume that p is a spectral parameter and we shall denote the eigenfunctions, cor- 
responding to the values fi f~,~. as 11 ',,, (z; J.1 where 

The function 6 (z, z,; h. 15) which is meromorphic with respect to I3 can be expanded in the 

simplest fractions /I/. The integrals of the individual terms of the corresponding expansion 
of (1.3) are expressed in terms of well-known special functions. As a result the accurate 
solution of problem (1.1) is written in the form of a sum of sinqle integrals /l/ 

$n (z. +; 0) = % (Z? )*) g %I (Z,? ib) 
G (1~) :: ln:2 -- Si (u)l sin u - Ci (u) COY U, 1 arg u / < n 

Si (u) and Ci (11) are sine and cosine integrals and 8" is the zero of 
in the interval / 8 1 <Cl. 

2. In deriving new expressions for &(s. y, z), we shall start out 
of the wave field in the form of a double integral (1.2), (1.3). We will 

the expression C' (8) 

from a representation 
first derive the 

formula which relates 5(-s, y. z) and C(J. y. z). If the change of variables 0 -8, is 

made in the integral (1.2) and the complex conjugate of (1.3) is taken, we obtain that 

and the functions q+ is given by formula (1.3) with the integration path, c_, replaced by 

the complex conjugate. Let this path be '5, which passes around the poles of T along small 

semicircles from above in the complex plane of 8. We now note that 

The summation in (2.2) is carried out over all the poles of r which are positive along 

P. As a result, we find that the expression for i(z.y.2) can be written in the form 

This formula enables one to confine oneself to the consideration of the case when z 0. 

Next, let h be a complex number, Ii0 be any pole of c and I),, be the corresponding 

eigenfunction of problem (1.4). By multiplying the equality L(Q) = 0 by the function tlO*. 

which is the complex conjugate of nO, and integrating the resulting expression along z from -h 
to 0 using the boundary conditions from (1.4), we obtain the integral identity 

from which it follows that, when Imhf 0. 
lrn h.lm p0 > 0 (2./L) 

and, when In, h = 0 and Reh,<O, the function 5 can only have negative real poles along 

P. 
Inequality (2.4) also remains true in the case when Pa is a fixed complex number, 1111 pO# 

0 and h is a pole of c 
Let us now transpose expression (2.1). In order to do this, we consider the function 



~(0) specified by formula (1.3) in which the integration path 
real axis of p. By taking account of the inequality (2.4), we 

in the domains where Imh# 0 and Imh=O, Reh,<O and 

in the complex plane of 8: --n/Z ,<Re8<0, Im8>0 satisfies 

goes from 0 to DC along the 
find that (~(6) is analytical 
Re [iu (8)l < 0. The half band 
these conditions. The function 
which follows_ from the asymp- f is bounded when fm8+ +w and the values of p are real, 

totic behaviour of Green's function /6/. The above-mentioned properties of cand q enable 
one, using contour integration, to carry out the transformation 

--n.?i_i‘X 

J, = f '~+a%== s cpd8+ -i cpd0 (2.5) 
.-n/z -x:2 -_Ocim 
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The function T(8) is also analytic in the semiband y(Ref!<n;2,Im@<U. y=arcsin 

(yiV-rS + Y'). In the interval E: Refl = x/2, Im8 <c<u, the function 2 only has real negative 
poles along p and, therefore, <p*(B)= ~(8) in 1. Furthermore, o<argIp(0)1< ni2 in this 
interval which enables one to rotate the contour of integration in the expression for the 
function T(8) into the upper complex halfplane of the parameter I3- As a result, we find 
that 

(2.8) 

Here, the integration is carried out along the upper bank of the cut (-m,Ol. In rep- 
resentation (2.6), the function rp (8) allows analytical continuation into the domain where 
Re [p @)I > 0 and Im h<O. We now carry out the transformation 

(2.7) 

using contour integration. 
The integrals from the right-hand sides of (2.5) and (2.7) are now added in a pairwise 

manner. It can be shown that the real part of the sum of the first of them is equal to zero 
and they therefore make no contribution to (2.1). So, we have 

Re(l,+ J,)=Re[ S" Td8+P[aqd6] (2.8) 
-0 -ira 0 

The integrand of the first integral in (2.8) can be represented in the form of (2.6). 
Actually, here, for values of 6 located to the left of the positive part of the imaginary axis, 
Im h<O, by virtue of (2.4), the function f has no poles along 8 when Imp>0 and in the 
neighbourhood of the integration path of the interval 0< arg Ip @)I< x 2 which is being 
considered. Next, since Im 1320 in (2.6), the function 3 has no poles along h in the 
domain Imh<O and integration with respect to 8 in (2.8) can therefore be carried out 
directly along the imaginary axis. By adding the first integral from (2.8), which has been 
transformed in this manner, to the complex conjugate of the second integral and taking account 
of the value of argp'/* on the banks of the cut,we find that 

im 

Here, the contributions from the poles 
summed. 

As a result, the double integrals from 
integrals 

of 2 which are negative with respect to p are 

(2.1) are transformed into the sum of single 

(2.9) 
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where ti (.) is the Heaviside unit function. 
The parameter h -= (c cos Cl-' only takes positive values along the integration paths in 

(2.9). It is known that, for real h, the dispersion dependence I', == 8,, (i,) I which is a mono- 
tonically increasing function of h, only has a single zero at the point ?, = ?.,,,A,, rliei, where 

CX is the velocity of propagation of the long waves of the n-th mode. In the subcritical 
case c<c,, the function p, is positive in the interval -X.2 < 0 < n':! and, in the 
interval (0, iw), there is just a single zero at the point 0 = H,,. Bn = i 111 (fr,,-’ t 1 fr,,m” - I) 
where fr, = c c,, is the Froude number of the n-th mode. Hence, when C<C,, the integration 

of i,, actually begins from the point A =-- W,,. In the supercritical case when c> c,,, the 

function I$, has two zeros at (1 =_+Oli, 8,, = arc cos (fr,,-') in the interval (-3 2. n 2) and does 

not have any zeros on the imaginary axis 0. Since only the imaginary part of the integral is 

required in the formula for &,,, the interval (--8,,, e,,) makes no contribution to E,:!. 

We note that, for computations using formulae (2.9), calculations of the dispersion 
dependences and the eigenfunctions of the Strum-Liouville problem corresponding to (1.4) are 

only required for real non-negative values of h. 
The parameter A also takes real, non-negative values on the straight lines he (j ~~ -\-r[ 2 

in the complex plane of the parameter 0. In a similar way to that employed in deriving (2.9), 

it is possible to derive a further representation of the solution 

‘I”’ T’L, 8. 

i I / a _ - In1 \ exp (ipp) $,, do, ;, ,; -= IllI 
-.7/z 

J,: =p(- lPh’lP)$,,d’) 

Here, H,,, = -on in the case when c > clL, and t),,, = O,, when c :< c,. Integration with 

respect to 0 when c<c,, in the formula for c,,s is carried out in the intervals (--n/2. (I) 

and (0. n,,). 

a. ‘i L 
a 

04 
C 

0 - m / 

-0. 

-5 0 5 I, 

Fig.1 Fig.2 

a. 2 
b 

0 I 

- 0.2 m 
-20 0 20 5, 

Fig.3 

The solutions (2.9) and (2.10) which have been obtained in this paper are of a single 
type with the integrals occurring in them differing in their integration limits. The new 

formula are more convenient than (1.5) for numerical implementation since the integrands in 
(2.9) and (2.10) do not contain special functions and do not have logarithmic singularities. 
We further note that the limits of integration in (2.9) and (2.101 are independent of the 

spatial coordinates (J. y) unlike the integrals of j,,,. 

Example. Let us now consider the case of uniform stratification (A'-=- corlst). The Boussinesq 
approximation and the "solid cover" condition on the surface of the fluid enable us to obtain 

explicit expressions for the eigenvalues and eigenfunctions 
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The results of calculations of the first mode cr and its terms using formulae (1.5) (a), 
(2-g) (b) and (2.10) (c) are shown in Fig.1 for the subcritical case when fr,==~/c~~= 0.8 and, 
in Fig.2, for the supercritical case when fr, -= 2.0. The values of the integrals are given 
to within a factor of $,, which, in this example, is independent of the variable 8. & LX3 and 

5rs and represented by broken lines, &, c,, and c,* are denoted by the dotted and dashed 
lines and j, is represented by the solid line. The calculations were carried out for y = i&in 
and, in the figures, s, = snih. 

The integrals LIZ, &a and 515 are even functions bf the x coordinates. At small dis- 
tances along y from the wave generator, their contribution is considerable in the neighbour- 
hood of the y-axis while, in the downstream domain (when s>O), the first terms of i, make 
the main contribution to the wave field. 

The dependence of the integrals being considered on x in the neighbourhood of the leading 
front /3/ when IQ> 1 and at large values of y is of interest. The calculations which were 
carried out show that the nature of the dependence of c,& and cm does not change as y in- 

. . 
creases. The maximum in cl2 divides into two as .ZJ increases. One of these is localized in 
the neighbourhood of the leading front and the second is symmetrical to it with respect to 
the y-axis /l/. Results of the calculations for I = Shix and fr,= 2.0 using formulae (1.5) 
and (2.9) (b) are shown in Fig.3. The notation on the curves is the same as that in Figs.1 
and 2. Calculations using the third formula (2.10) showed that, for these values of the par- 
ameters, the magnitudes of cm are less than 5% of ;,&. The position of the leading front is 
indicated by the arrows in the figure. We note that, in the region where r<O, the term 
&, compensates {,%. The same feature may also be noted at a small value of y in Fig.Z,a. 

An analysis of the calculations shows that, for a given accuracy of the calculations, 
the contribution of the terms inr and i,,@ from formulae (2.9) and (2.10) can be taken into 
account in a smaller domain than the contribution to in2 from (1.5). For instance, in the 
interval from y=2fa to y=10 to 2Oh, starting from which the asymptotic forms [5/ can be 
used, the characteristics of the waves are estimated with an accuracy of 5% using the integrals 
ts and r;,,. 
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